


• 
n-•ltte';Pr1se • 

1ntegnty 

Integration Agents 

A
rchitecturally, their purpose is to layer a host of dis­
parate, native interfaces so as to provide common, com­
patible interfaces. There are lots of names for them -

adapters, connectors, interfaces, wrappers, etc. And therein lies 
significant confusion. The name chosen by a vendor for that 
piece of software that lies architecturally between the message­
handling middleware and either application software or services 
(such as DBMSes, directories, and analytic or business intelli­
gence engines) is, in my experience, chosen Jess for technical 
than for marketing reasons. This practice often, either intention­
ally or unintentionally, misleads the consumer - an adapter 
may not adapt to anything, a connector may require develop­
ment, wrappers may not encapsulate. In short, the words tend to 
set expectations that are yet to be realized in practice. 

Worse than this semantic confusion is the lack of functional 
correspondence between any two vendors ' products. Show me 
two adapters (I'll pick on "adapters" without prejudice just to 
save space) from two vendors for any specific packaged appli­
cation, and I promise, you will have difficulty understanding all 
the differences in functionality. It doesn't matter whether these 
EAI components have similar names or not. It doesn't even 
help to say that the component is COREA (or COM) compliant 
- you just don't know which services are or are not supported 
without going pretty deep. 

The worst of all problems with adapters, connectors, and the 
like is their downright primitive nature. Those of us who have 
been working with mission-critical or enterprise applications for 
a while have become accustomed to certain infrastructure re­
quirements. As designers of such software, we incorporate sup­
port for RASS (Reliability, Availability, Serviceability, and Scal­
ability) without giving the decision to do so much consideration. 
Instead, we spend time trying to achieve higher levels ofRASS, 
most often by selecting better infrastructure components (such 
as platforms, networks, brokers, application servers, and pack­
aged applications) and using redundancy. Sadly, most "EAI 
experts" - even those with decades of IT experience - focus 
only on data-level and message-level aspects of adapters. RASS 
cannot be addressed solely through such functionality. 

All these names can be treated as vendor-specific names for 
the generic concept. The Enterprise Integration Council (EiC) 
has proposed the term "integration agent" for this type of com­
ponent, and I shall use it henceforth. Lets consider some of the 
properties of an ideal integration agent, in essence providing a 
reference model for integration agents. Clearly, it should encap­
sulate the functionality being provided by the application or ser­
vice and, therefore, provide a high level of abstraction and imp le-

\0 

mentation independence. It should connect simply and without 
shutting down any other component - plug-and-play integration 
agents lead to software appliances and so dynamic registration is 
needed. It should, in fact, adapt - if the native interfaces change, 
the integration agent should not break and should be able to sur­
face any additional functionality. This means it has to support 
interrogation. For example, an integration agent should be able to 
both publish and respond to interrogation about metadata. It 
should be "boundary aware," meaning that transaction bound­
aries and timing constraints imposed by the integration environ­
ment and the application or service should be respected and not 
masked. It should be active rather than passive, being able to 
respond to external events and to publish its own events. Most 
important, it should enhance RASS, not become yet another 
autonomous potential point of failure. 

For RASS to be supported, an integration agent must be fully 
instrumented and behave as a distributed agent. It should not die 
with the application or service. System management interfaces 
that provide performance and health monitoring are essential and 
are sometimes supported by EAi vendors, although not of the 
integration agent itself. Few integration agents can respond 
actively via system management interfaces. For example, it 
should be possible to remotely start the integration agent and to 
stop it gracefully, and to use the integration agent to remotely 
start and stop the application or service. Online self-test, trace, 
loopback, and loopforward modes can be extremely advanta­
geous when rolling out a complex EAi project, but I have found 
none of these features in commercial integration agents. 

You can anticipate integration agents that address not only 
data and messages, but process and business performance 
metrics as well. Whether as properties of the application or 
service to be monitored and published or as constraints to 
which it must respond, it is only through the integration agent 
that we have hope of such coordination. 

Primitive or not in its current realization, the integration 
agent concept is sound. While their functionality is evolving, 
be acutely aware of the importance of integration agent selec­
tion - after all , they are the glue used to integrate the enter­
prise. If that glue isn't strong and flexible , the resulting enter­
prise will lack integrity. rl1I 

David McGoveran is president of Alternative Technologies, Inc. He has 
more than 20 years ' experience with mission-critical applications and 
has authored numerous technical articles on application integration. 
E-mail: mcgoveran@altemativetech. com. 

~ -" . 
Di:cuss "Enterprise Integrity" with 
David McGoveran at www.eaiforum.com . 

eA! Journal • Norember December 1999 


